Stability in a population model without random deaths by the Verhulst factor
نویسندگان
چکیده
A large amount of population models use the concept of a carrying capacity. Simulated populations are bounded by invoking finite resources through a survival probability, commonly referred to as the Verhulst factor. The fact, however, that resources are not easily accounted for in actual biological systems makes the carrying capacity parameter ill-defined. Henceforth, we deem it essential to consider cases for which the parameter is unnecessary. This work demonstrates the possibility of Verhulst-free steady states using the Penna aging model, with one semelparous birth per adult. Stable populations are obtained by setting a mutation threshold that is higher than the reproduction age.
منابع مشابه
Penna bit-string model with constant population
We removed from the Penna model for biological ageing any random killing Verhulst factor. Deaths are due only to genetic diseases and the population size is fixed, instead of fluctuating around some constant value. We show that these modifications give qualitatively the same results obtained in an earlier paper, where the random killings (used to avoid an exponential increase of the population)...
متن کاملThe effect of limiting resources in aging populations
The concept of a carrying capacity is essential in most models to prevent unlimited growth. Despite the large amount of deaths it introduces, the actual influence of the Verhulst term in simulations is often times not accounted for. Generally, it is treated merely as a scaling parameter that functions to keep simulated populations within computer limits. Here, we compare two different implement...
متن کاملThe Efficiency of Harvested Factor; Lotka-Volterra Predator-Prey Model
Scientists are interested in find out “how to use living resources without damaging the ecosystem at the same time?” from nineteen century because the living resources are limited. Thus, the harvested rate is used as the control parameters. Moreover, the study of harvested population dynamics is more realistic. In the present paper, some predator-prey models in which two ecologically inte...
متن کاملOptimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor
In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...
متن کاملDynamical behavior of a stage structured prey-predator model
In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...
متن کامل